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Abstract—Future wireless networks are evolving towards a 
heterogeneous cooperative and cognitive architecture to 
support broadband communication needs of different types of 
traffic. Future wireless networks will allocate network 
resources based on cooperative techniques. Resource 
controllers will apply the cognitive principle to find out status 
of various networks. We propose a predictive resource 
allocation strategy where we employ adaptive algorithms to 
predict the network loading. These algorithms can detect 
changes in the traffic characteristics, and adapt automatically. 
To validate our claim, we present the results of applying these 
adaptive algorithms on real-world network traffic traces. 

Keywords-Cognitive Networks, Traffic Prediction, Resource 
Allocation. 

I.  INTRODUCTION 
With widespread use of wireless networks and the 

emergence of multiple deployed wireless standards the 
wireless network design paradigm is changing rapidly [1]. 
In future wireless services will be offered through 
heterogeneous networks rather than using single standard 
wireless networks [2, 3]. Also, the emergence of software 
defined radio (SDR) will allow customers of any subscribed 
network to connect to any other network when either the 
QoS (Quality of Service) or the capacity of its subscribed 
network falls below a certain threshold value [2]. In future 
radio access networks (RAN) will be IP (Internet Protocol) 
based network which are expected to host many wireless 
access points and base stations. Figure 1 shows a typical 
heterogeneous wireless network where number of access 
networks are connected to a single RAN. Various access 
points and base stations will connect to the spectrum 
manager using an IP network. In this network architecture 
using SDR terminals mobile users can connect to any of the 
access points or base stations within their coverage area. 
The concept of the dynamic network selection algorithm 
using a network architecture known as TONA (Terminal 
Oriented Network Assisted) has been proposed and 
elaborated in reference [4]. The TONA architecture allows 
terminals to operate in the cooperative domain to improve 
the overall capacity of networks and QoS of user 
connections. In this work we propose an IP based 
heterogeneous network architecture where network 
resources are shared between a primary (licensed) and a 
secondary (unlicensed) network using the cognitive 

networking concept and the TONA architecture. The TONA 
architecture allows an IP based controller to exchange 
resource allocation information among its member 
networks. In a traditional cognitive network a channel 
sensing mechanism is employed by a secondary network to 
look for unused spectrum which can be borrowed by the 
secondary network [5]. In this paper we are proposing a 
layer MAC (Medium Access Control) based predictive 
resource allocation technique for a cognitive network where 
resources can be shared using an IP based heterogeneous 
network. Since various applications generate different types 
of traffic it is necessary for traffic controllers to deal with 
variety of traffic characteristics. The prediction algorithms 
must adapt to range of traffic patterns predict various traffic 
flows with good accuracy. To cope with this issue we use 
adaptive tracking algorithms to track different traffic 
prediction models. In particular, we consider autoregressive 
(AR), moving average (MA) and autoregressive-moving 
average (ARMA) models in this paper. The algorithms have 
been tested on real-world network traffic traces to validate 
our claims.  

 
Figure 1.  A cognitive and cooperative network with a single RAN, and 

multiple access points and base stations 

The organization of the paper is as follows. Section 2 
describes a cognitive and cooperative network architecture. 
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Section 3 presents the predictive resource allocation 
technique for cognitive networks. Section 4 presents short 
and medium term prediction techniques that can be used for 
the resource allocation in cognitive networks. Conclusions 
are drawn in section 6.    

II. COOPERATIVE AND COGNITIVE NETWORK 
ARCHITECTURE 

In a heterogeneous network as shown in figure 1 
different networking entities will collaborate with each other 
via the IP controller shown as the spectrum manager (SM) 
to offer best connectivity to users as well as to maximize 
utilization of their own network capacity. The cognitive 
networking concept has been developed with a view that 
each secondary (unlicensed) network on its own will find 
available unused capacity from other primary (licensed) 
network and utilize them as required. We propose a different 
scenario for cognitive networks where all the networks will 
cooperate by exchanging their network status information 
and share available spare capacity in an orderly manner. The 
main justifications for using the cooperative and cognitive 
networking (CCN) architecture are listed below. 

� A cooperative network will allow networking 
entities to share aggregate network resources by the 
user population using SDR terminals in different 
geo-clusters. Users whose QoS requirements are not 
met by the existing network can handover to a 
different network [2]. 

� A cooperative approach will allow networks to 
temporarily borrow network resources from primary 
networks in a more efficient manner. In a physical 
layer spectrum sensing approach a secondary 
spectrum could sense free spectrum from other 
networks and could use the spectrum without 
knowing the future requirements of the primary 
network. This approach could lead to QoS 
degradation in both networks. 

� An IP based resource allocation technique will 
eliminate the need for continuous physical layer 
channel sensing which could lead to increased power 
consumption of mobile terminals. 

In contrast to the conventional cognitive network 
architecture we propose a CCN architecture where each 
primary network broadcast resources information to allocate 
additional resources in secondary networks. The spectrum 
manager shown in figure 1 will collect information from all 
primary networks and distribute that information to 
secondary networks that are looking for additional 
resources. In this model each access points and base stations 
will send their channel occupancy level and current traffic 
volume to the spectrum manager. The spectrum manager 
will use that information and predict channel availability 
probability for its each member network. The spectrum 
manager will also have a repository of requests from 
different secondary networks. Secondary networks will 
predict their future traffic requirements and generate their 

resource requirement requests. Network resources can be 
allocated in different ways. Network resources can be 
allocated by the SM using following resource allocation 
techniques; scheduled, contention and auction based 
mechanisms. 

Using a scheduled allocation technique the SM will 
match the resource requests with the available spectrum and 
send a resource offer to a secondary network based on the 
best match, request arrival time and the priority of the 
request. The offered resource will be allocated for a fixed 
duration based on the prediction result. Each network 
resource will have a finite lifetime which is calculated using 
a prediction technique. If the secondary network accepts the 
request then the SM will remove the resource from the 
available resource list and inform the primary network about 
the allocation. In case of a contention based allocation, the 
SM advertises available resources and its parameters to all 
secondary networks. A number of secondary networks sends 
requests to the SM using a contention mode. The SM will 
allocate the resource to the first successfully received 
request. In an auction based approach each channel is 
advertised with a minimum price and then kept resource 
open for certain duration so that secondary networks can bid 
for the resource. The highest bidder from the list is allocated 
the resource. The CCN architecture avoids the need for 
continuous channel sensing process however; the 
architecture requires accurate prediction process to generate 
channel availability information. 

III. PREDICTIVE RESOURCE ALLOCATION TECHNIQUES 
Accurate traffic prediction is crucial for a CCN which 

would be an important part of radio resource management 
system for future networks. When radio resource occupancy 
is predicted accurately for each wireless networks in a CCN, 
users can select the optimal channels, which will help to 
reduce probability of connection loss for users both in 
primary and secondary networks. This approach could 
increase the overall network resource utilization in a 
heterogeneous network.  

Because of its heterogeneous structure, the CCN will 
consist of different wireless networking standards with 
different channel conditions, and user distributions, whose 
traffic demand and behavior could vary quite widely.  
Traffic modeling and prediction in such a network is very 
complicated, and requires a long observation of history. 
Besides, the stochastic parameters could vary very slowly, 
and short-term forecasting in this case might not perform 
well.  For more accurate prediction, the parameters should 
be estimated in “real time” to track time-varying traffic 
characteristics. These algorithms should have low 
dependency on priory data, and modest requirements on the 
memory. These features are common for recursive 
identification methods which can be applied together with 
non-realtime identification methods to make more accurate 
parameter estimation. Moreover, taking into account the 
traffic pattern and network conditions of nodes in a CCN 
which could be very different, it may be necessary to use 
several traffic models to make accurate prediction. 



In the following sections we describe recursive 
estimation techniques and models that could be deployed for 
forecasting network resources in a CCN. We also present 
some results of 1- and 10-step-ahead prediction for different 
traffic patterns, and discuss their performance for different 
traffic conditions. 

A. Traffic Model 
To generate predictions, information about past events, 

time-series data, is collected. According to definition, time 
series is a sequence of observations )1(, ... ),1( ),( ytyty �  of 
a random process Y  at discrete time intervals, where an 
observation at time t  is given by )(ty . Many time series 
models, such as AR(na) (autoregressive), MA(nc) (moving 
average), ARMA(na, nc) (autoregressive moving average) 
have been proposed for time-series analysis [6]. These 
methods use the following model [7]: 

� )()( te(t)ty �� θΤ� ��� 	
��

where � is the system parameter vector, and the repressor 
�(t) depends on the past data and the model structure. For 
the AR model: 

T))( ... )1(()( natytyt ������ � Tθ ) ... ( 1 naaa� � (1a)�

For the MA model: 

T))( ... )1(()( nctetet ���� � Tθ ) ... ( 1 nccc� � (1b)�

For the ARMA model: 
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B. Parameter Estimation 
In the adaptive (real-time) identification methods, the 

parameter estimate )(θ̂ t  based on data up to time t  is 
computed in a recursive way by modification of an estimate 

)1(θ̂ �t . The advantages of recursive methods can be 
summarized as follows: 

� they are central part of adaptive systems where the 
filtering action is based on the most recent model; 

� they have relatively small (compare to off-line 
identification methods) requirements on primary 
memory; 

� they can be modified into real-time algorithms to 
track time-varying parameters; 

� they can be deployed for fault detection when the 
observed system has changed significantly. 

There are four recursive methods (recursive least squares 
(RLS), recursive instrumental variable (RIV), pseudo-linear 

regression (PLR), and recursive prediction error (RPEM)) 
used for parameter estimation of different models. Two of 
them are PLR and RPEM, which can be applied to track 
parameters of AR, MA, and ARMA models. The following 
general algorithm is used: 

]
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Here λ  is a forgetting factor to discount the 
measurements obtained previously; the smaller is the value 
of λ , the faster information is forgotten (usually λ = 0.95-
1); 

)()( 1 tRtP �� ��� )()( ttRtR � ��� 	2e��

)(tR  - Hessian approximation in Gauss-Newton algorithm;  
)(tK - the gain vector showing how much the value of 
)(tε will modify the different elements of θ ; 

)(ˆ)()( tytytε �� - Prediction error of estimation; 
Tψ ))( ... )1( )(... )1(()( ncttnatytyt FFFF ������� �� - negative 

gradient of )(tε  with respect to θ ; 
)(tyF , )(tF�   - filtered data. 

For the RPEM: 
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For the PLR: 
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i.e. filtering of RPEM is neglected [7]. 
The effect of initial values on performance of recursion 

was widely discussed in literature [7, 8]. Without any priori 
information it is common practice to set: 

0)0(ˆ �θ �� IP ρ�)0( �� 	2h��

where ρ  is a “big” number. Usually P is set so that (t0 = 10 
- 25): 
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IV. PERFORMANCE ANALYSIS OF PREDICTION 
TECHNIQUES 

To observe the performance of time-series models in 
different environments, we use one theoretical (Poisson 
packet arrival process with constant and varying mean) and 
two experimental traffic traces (data packages LBL-Conn-7 
and DEC-Pkt1). 

The first trace, LBL-Conn-7, contains the TCP 
(Transmission Control Protocol) traffic data between the 
Lawrence Berkeley Laboratory and the rest of the world in 
the format where timestamps have microsecond precision. 
After processing the trace for uplink connections only we 
get another trace where overall uplink data rate is calculated 
for each microsecond. Recursion starts immediately with the 
observation data. Figures 2 and 3 show 50-ms-long for 1-
step-ahead and 500-ms-long for 10-step-ahead PLR 
prediction respectively using AR(1), MA(1), and 
ARMA(1,1)  models. We use normalized mean squared 
error NMSE, as shown in equation (3) to evaluate 
performance of the prediction after a certain period of 
recursions. The prediction error ratio PER shown in 
equation (4) is used to measure the accuracy of real time 
prediction during recursion. The NMSE values for 1- and 
10-step-ahead prediction obtained after 3000 recursion are 
given in Table 1. 
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Figure 2.  50-ms-long observation and recursive 1-step-ahead PLR 

prediction using AR(1), MA(1), and ARMA(1,1) models (LBL-Conn-7) 

 

Figure 3.  500-ms-long observation and recursive 10-step-ahead PLR 
prediction using AR(1), MA(1), and ARMA(1,1) models (LBL-Conn-7) 

TABLE I.  VALUES OF NMSE FOR DIFFERENT TRACES WITH PLR  

Trace 
 Model 

NMSE 
1-step-ahead 

prediction 
10-step-ahead 

prediction 

LBL-Conn-7 
 

AR(1) 0.071397 0.151657 

MA(1) 0.637899 1.225446 
ARMA(1,1) 0.072005 0.146376 
ARIMA(0,1,1) 0.000741 - 
ARIMA(1,1,0) 0.000742 - 
ARIMA(1,1,1) 0.002977 - 

DEC-Pkt1 
 

AR(1) 4.81302*10-7 4.60807*10-6 
MA(1) 1.742629 3.44529 
ARMA(1,1) 4.89*10-7 1.75*10-6 
ARIMA(0,1,1) 4.81302*10-7 - 
ARIMA(1,1,0) 6.3*10-8 - 
ARIMA(1,1,1) 8.16*10-8 - 

Poisson 
 

AR(1) 1.578521 - 
MA(1) 3.576409 - 
ARMA(1,1) 1.035006 - 
ARIMA(0,1,1) 0.68656 - 
ARIMA(1,1,0) 0.471443 - 
ARIMA(1,1,1) 0.610663 - 

 

Both short term and medium term results show that best 
prediction performance is obtained using the AR(1) model. 
Results also show that the MA model is unstable and fail to 
predict traffic value accurately. Thus, we select from the 
family of AR(na) models using the appropriate order of p by 
minimizing the Akaike Information Criterion (AIC) shown 
in equations (5) [9], and get the optimal value for na = 1. 
Figure 4 presents the values of AIC(N, na after N = 3000 
recursions). 
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Figure 4.  The values of AIC(N, na) after N = 3000 recursions (LBL-
Conn-7) 

To compare performance of different estimation 
methods we tracked the same trace using the RPEM for the 
AR(1) model. Previous research reported that both PLR and 
RPEM techniques offers consistent performance, but 
behavior of the PLR in the transient phase might be better 
than that of the RPEM [7]. Our results confirm this 
observation – at the beginning of recursion prediction error 
ratio using the RPEM technique generates larger values than 
the PLR technique as shown in figures 5, 6. However, after 
a certain period the RPEM shows better performance than 
the PLR technique as shown in figures 7, 8. Thus, RPEM 
takes more time than the PLR to estimate the parameters of 
the model. In our case the trace convergence delay of PLR is 
10-15 recursions and for the RPEM; 50-60 recursions. 

 

Figure 5.   Observed and predicted values for AR(1) model using PLR and 
RPEM methods at the beginning of recursion (LBL-Conn-7) 

 

Figure 6.   Prediction error ratio for AR(1) model using PLR and RPEM 
methods at the beginning of recursion (LBL-Conn-7) 

  

Figure 7.  Observed and predicted values for AR(1) model using PLR and 
RPEM methods after 920 recursions from the beginning (LBL-Conn-7) 

  

Figure 8.  Observed and predicted values for AR(1) model using PLR and 
RPEM methods after 920 recursions from the beginning (LBL-Conn-7) 

The second trace used in this work is the DEC-Pkt1 
contains the all wide-area traffic between Digital Equipment 
Corporation (DEC) and the rest of the world with 
cumulative traffic volume given for each microsecond. 
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Similar to the first trace, we made 30000 recursions for AR, 
MA, and ARMA models. Figures 9 and 10 show the 
performance for 1- and 10-step ahead PLR predictions; 
corresponding NMSE values are listed in Table 1.  

We can select the model order by applying the famous 
Akaike Information Criterion [7,9], which yields an optimal 
value 1 for AR models. We also compare performance of 
prediction errors using the PLR and the RPEM techniques 
for the AR(1) model as shown in Figures 11 and 12. Results 
show that the PLR gives smaller PER values not only at the 
beginning as shown in figure 11, but also after 20000 
recursions as shown in figure 12. 

 

 
Figure 9.  50-ms-long observation and recursive 1-step-ahead PLR 
prediction for AR(1), MA(1), and ARMA(1,1) models (DEC-Pkt1) 

 
Figure 10.  500-ms-long observation and recursive 10-step-ahead PLR 
prediction using AR(1), MA(1), and ARMA(1,1) models (DEC-Pkt1) 

  
Figure 11.  Prediction error ratio for AR(1) model using PLR and RPEM 

methods at the beginning of recursion (DEC-Pkt1) 

  
Figure 12.  Prediction error ratio for AR(1) model using PLR and RPEM 

methods after 20000 recursions from the beginning (DEC-Pkt1) 
 
Next trace used in the performance evaluation is a 

theoretical Poisson generated sequence. Even though the 
Poisson model has been reported to be unsuitable for 
Internet traffic modeling [10], Poisson generated traffic is 
still widely used in communication networks, and can be 
used as a good example of a process with non-zero mean 
and highly random (unpredictable) pattern (a Hurst 
parameter of a Poisson process H = 0.5). We generated 
Poisson sequence, and run 50000 recursions for AR, MA, 
and ARMA models. It can be seen that Poisson generated 
sequence has local spikes that cannot be predicted using any 
of these models as shown in figure 13.   Corresponding 
NMSE values for each model are listed in Table 1.  

It has been shown in previous research works that 
drifting disturbances and non-zero means can be treated by 
the family of ARIMA (autoregressive integrated moving 
average) models [11]. An ARIMA model is an ARMA 
model constrained to have the factor of )1()( �� tyty . 
Table 1 show that the lowest value of NMSE for Poisson 
traffic prediction was achieved by the ARMA(1,1) model. 
However, the AR(1) model is more accurate in predicting 
peaks in Poission distributed traffic traces as shown in 
figure 13. Figure shows the curve of ARMA prediction is 

 

 

 

 

 

 

 



smoother than that of the AR model. Therefore we use the 
ARIMA(1,1,0) which corresponds to the AR(1), and the 
ARIMA(0,1,1) model corresponds to ARMA(1,1) models to 
generate the next prediction. Results confirm that the 
ARIMA model is more efficient in case of a heavily peaked 
traffic. Both ARIMA(0,1,1) and ARIMA(1,1,0) models are 
able to predict the spikes of Poisson process as shown in 
figures 14 and 15, and Table 1. 

 

 
Figure 13.   50-ms-long observation and recursive 1-step-ahead PLR 

prediction using AR(1), MA(1), and ARMA(1,1) models (Poisson process) 

 
Figure 14.  50-ms-long observation and recursive 1-step-ahead PLR 

prediction using ARMA(1,1) and corresponding ARIMA(0,1,1) models 
(Poisson process) 

 
Figure 15.  50-ms-long observation and recursive 1-step-ahead PLR 

prediction using AR(1) and corresponding ARIMA(1,1,0) models (Poisson 
process) 

 
In order to observe performance of the ARIMA 

prediction technique for real traces LBL-Conn-7 and DEC-
Pkt-1), we applied it for the traces that we tracked before 
using AR, MA, and ARMA models LBL-Conn-7 and DEC-
Pkt-1). Results show that the ARIMA can predict future 
traffic load in a network with a higher accuracy as shown in 
figures 16 and 17, and in Table 1. Based on these 
observations the ARIMA model can be recommended for a 
predictive resource allocation system in a CCN. 

Following observations can be made using the recursive 
prediction for different time-series models: 

� Both PLR and RPEM techniques can be used for 
traffic prediction with time-series models. Even 
though PLR technique does not use filtering applied 
in the RPEM. The PLR technique converges more 
quickly than RPEM technique (10-15 recursions for 
traces that we tracked). Besides that the RPEM is 
more memory-demanding and complex than the 
PLR technique. Therefore, PLR seems to be more 
attractive for CCN applications where prediction 
should be produced in a very short time. 

� Time-series models like AR and ARMA offers quite 
correct prediction for traffic traces, but fail to predict 
for random processes like Poisson. In such cases 
ARIMA model can be applied. On the other hand, 
ARIMA can be used for real-time traces as well. For 
our traces, in particular, it increased the accuracy of 
prediction with AR and ARMA model. 

 

 

 

 

 



 
Figure 16.  50-ms-long observation and recursive 1-step-ahead PLR 

prediction using AR and ARIMA models (LBL-Conn-7) 

 

Figure 17.  50-ms-long observation and recursive 1-step-ahead PLR 
prediction using AR and ARIMA models (DEC-Pkt-1) 

 
In a CCN architecture as mentioned in section 2 that both 

primary and secondary networks need to employ traffic 
prediction techniques. It is obvious, that some of the models 
those have been widely used (for example, ARMA) earlier in 
networking applications may not be able to predict traffic 
parameters accurately. Based on the performance analysis we 
propose to use the ARIMA model for predictive resource 
allocation technique. Generated prediction can be presented 
in two ways: (i) as a table with models and their prediction 
errors as shown in Table 2; (ii) a weighted sum of predicted 
values, where weighting coefficients should be related to 
prediction errors as shown in equations (6a, b). 

 
 

TABLE II.  EXAMPLE OF TABLE FOR TRAFFIC PREDICTION 

Model Predicted 
value 

PER 

AR(1) Value1 PER1 
ARMA(1,1) Value2 PER2 
ARIMA(0,1,1) Value3 PER3 
ARIMA(1,1,0) Value4 PER4 
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CONCLUSIONS 
In this paper we introduced a new layer MAC/RLC 

based predictive network resource allocation algorithm. The 
proposed algorithm will improve the network resource 
allocation policies in a heterogeneous cooperative and 
cognitive network.  Spectrum sensing based secondary 
network resource allocation techniques could introduce 
instability in the network particularly when secondary 
networks are not aware of their and primary networks future 
needs. A prediction based algorithm will remove that 
uncertainty hence improving the network stability. One of 
the main aims of this paper is to develop suitable traffic 
prediction techniques for the resource allocation. Through 
extensive analytical and simulation results we have shown 
that it is possible to accurately predict network traffic 
demand in communication networks.  Next stage of the 
work we will further develop the predictive resource 
allocation algorithm and analyze the performance of the 
predictive resource allocation algorithm using a discrete 
event simulation and realistic traffic generators. 
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